개요

GCR공정은 공기-폐수-미생물 사이에 산소전달율을 높여 미생물의 활성도를 증가시킴으로써 고농도 폐수처리가 가능하도록 고안된 컴팩트한 생물학처리 공법입니다.

특징

효율적인 처리

- 반응조 내에서 박테리아에 산소와 기질의 전달을 극대화
- 35~50\% 높은 산소 이용율 및 기질 전달율에 의하여 미생물 활성도 증가
- 포름알데히드, 폐놀 등과 같은 독성물질 유입에서도 높은 처리효율

항목	GCR	재래식 생물반응조
산소 이용율	$35 \sim 50 \%$	$5 \sim 15 \%$
COD-용적부하율	$\left\langle 50 \mathrm{kgCOD} / \mathrm{m}^{3} \cdot \mathrm{~d}\right.$	$\left\langle 3 \mathrm{kgCOD} / \mathrm{m}^{3} \cdot \mathrm{~d}\right.$
$\mathrm{NH}_{4}-\mathrm{N}_{8}$ 적부하율	$\left\langle 1.0 \mathrm{kgNH} 44-\mathrm{N} / \mathrm{m}^{3} \cdot \mathrm{~d}\right.$	$\left\langle 0.3 \mathrm{kgNH} 44-\mathrm{N} / \mathrm{m}^{3} \cdot \mathrm{~d}\right.$
MLSS 농도	$\langle 15.00 \mathrm{mg} / \mathrm{L}$	$\langle 8.000 \mathrm{mg} / \mathrm{L}$
MLVSS/MLSS	70%	35%
소요부지면적	$5 \sim 10 \%$	100%

간편한 유지관리

- 2상 제트 노즐의 반영구적 사용과 높은 산소공급으로 유지관리 용이
- 부하량 변화에 따른 운전의 유연성 우수

설치 용이한 콤팩트 모듈 디자인

부지면적 최소화

- 시공비 및 운전비 감소

GCR 공법

프로세스

GCR 내의 MLSS혼합액과 폐수를 순환펌프로 2상 제트노즐로 보내면 노즐 끝에서 액체와류를 형성하여 주입된 공기의 미세기포를 생성합니다. 형성된 액체와류와 기포는 반응조 하부로 내려가 바닥에 부딪혀 상승합며, 상승된 기포의 일부는 액체와류를 따라 다시 아래로 순환하면서 산소가 용해됩니다.

